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Abstract

We derive some explicit expressions for correlators on GrassmannianGr(C
n) as well as on

the moduli space of holomorphic maps, of a fixed degreed, from sphere into the Grassmannian.
Correlators obtained on the Grassmannian are a first-step generalization of the Schubert formula
for the self-intersection. The intersection numbers on the moduli space forr = 2, 3 are given
explicitly by two closed formulas, whenr = 2 the intersection numbers are found to generate the
alternate Fibonacci numbers, the Pell numbers and in general a random walk of a particle on a
line with absorbing barriers. Forr = 3, the intersection numbers form a well-organized pattern.
© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The classical Schubert calculus computes intersection numbers on GrassmanniansGr(C
n)

of complexr-planes inCn by using the Giambelli and Pieri formula [1–3]. It is due primarily
to Schubert more than a 100 years ago to obtain the number,∫

Gr(Cn)

x
r(n−r)
1 = 1!2!3! · · · (r − 2)!(r − 1)!(r(n − r))!

(n − r)!(n − r + 1)! · · · (n − 1)!
,

known as the degree of the Grassmannian or the self-intersection of the first Chern class
x1, of ther-plane bundleQ on Gr(C

n). Geometrically speaking this number corresponds
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to the number of(r − 1)-planes inCPn−1 meetingr(n − r) general(n − r − 1)-planes, in
particular forr = 2 there are two lines meeting 4-given lines inCP3.

Our goals in this paper are twofold, first we would like to extend the above formula to
other correlators that are products of Chern classesxi , 1 ≤ i ≤ r. In this direction, we use
the pairing residue formula that computes the correlators in topological Landau–Ginzburg
theories [4] and the explicit formula for the potentialW(xi) that generate the cohomology
ring [5] to do some explicit computations on the Grassmannian. The different intersec-
tion numbers obtained show a certain pattern amongst themselves and is formulated in a
proposition which in turn lead to the closed formula for

∫
Gr(Cn)

x
r(n−r)−rkr−1
1 x

kr−1
r .

The second goal is to carry out similar computations on the space of holomorphic maps of
a fixed degreed from a Riemann surface of genus zero(CP1) into the GrassmannianGr(C

n).
Formally, both computations use the same formula [4,6], the difference between the two
cases is that the potential in the second case is a deformed potentialW̃ (xi) and is connected
to the previous potential bỹW(xi) = W(x) + (−1)rqx1 [7]. This potential reproduces the
quantum cohomology ring of the Grassmannian [8]. The concept of deformation of the
cohomology ring was first observed in [9] in connection with theCP1 model. On the space
of holomorphic maps fromCP1 into Gr(C

n), we have two closed formulas forr = 2 and
3 for anyn. Whenr = 2, the intersection numbers generate well-known numbers like the
Fibonacci numbers and the Pell numbers forn = 5, 6, respectively, and whenn ≥ 7, the
intersection numbers generate a random walk of a particle on a line with absorbing barriers
[10,11]. Our closed formula for the intersection numbers on the space of holomorphic
maps intoG3(C

n), when restricted to constant maps, gives all the intersection numbers
onG3(C

n). Some intersection numbers on this space were computed whenn = 6 and for
degrees 1 and 2. We find that these numbers organize themselves in an ordered pattern, it
seems that the intersection numbers on this moduli space is a zoo of interesting numbers.
This fact is already presented on the GrassmannianGr(C

n); if we set N = n − r in
the Schubert formula, we obtain the generating functions for ther-dimensional Catalan
numbers [10]. Whenr = 2, we obtain the ordinary Catalan numbers(2N)!/(N + 1)!N !

This paper is organized as follows. In Section 2, after a brief account of the cohomol-
ogy ring of the Grassmannian, the pairing residue formula which computes correlators in
N = 2 topological Landau theories, and fixing our notations, we compute some intersec-
tion number on the GrassmannianGr(C

n) from which we obtain closed formula for the
correlators. Sections 3 and 4 will be devoted to computations of correlators on the space of
holomorphic maps fromCP1 into Gr(C

n), in which we find connections between intersec-
tion numbers, Fibonacci numbers, Pell numbers and the random walk. Our conclusions are
given in Section 5.

2. Intersection numbers on a Grassmannian

In this section, we shall first recall briefly the definition of the cohomology ring of
the GrassmannianGr(C

n) in the Landau–Ginzburg formulation [9,12,13] and the pairing
residue formula of theN = 2 topological Landau–Ginzburg model that computes the
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correlators [4]. We then use the specialized form of “the pairing residue formula” and the
explicit expression for the Landau–Ginzburg potential in terms of the generatorsxi(1 ≤
i ≤ r) of the cohomology ring of the Grassmannian [5] to compute some intersection
numbers. The intersection numbers computed are exactly those obtained using the Schubert
calculus [2,3]. These computations show that the two-point function〈xα1

1 x
α2
2 〉 onG2(C

n+1)

is equal to the two-point function〈xα1
1 x

α2−1
2 〉 onG2(C

n). In general, ther-point functions
on Gr(C

n+1) andGr(C
n) are related in the same way. This fact will be proved in the

proposition below and as a consequence we obtain an explicit expression for the two-point
functions onGr(C

n) involving the Chern classesx1 andxr .
The cohomology ring of the complex Grassmannian manifold, denoted byH ∗(Gr(C

n))

is a truncated polynomial ring in several variables [14] given by

H ∗(Gr(C
n)) ∼= C[x1, . . . , xr , y1, . . . , yn−r ]

I
, (1)

wherexi = ci(Q) (for 1 ≤ i ≤ r) are the Chern classes of the quotient bundleQ of rank
r, i.e.,xi ∈ H 2i (Gr(C

n)) andyj = cj (S) (for 1 ≤ j ≤ n − r) are the Chern classes of the
universal bundleS of rankn − r. The idealI in C[x1, . . . , xr , y1, . . . , yn−r ] is given by

(1 + x1 + x2 + · · · + xr)(1 + y1 + y2 + · · · + yn−r ) = 1, (2)

which is the consequence of the tautological sequence onGr(C
n)

0 → S → V → Q → 0,

whereV = Gr(C
n) × Cn. By using Eq. (2), one may rewriteH ∗(Gr(C

n)) as

H ∗(G(Cn)) ∼= C[x1, . . . , xr ]

yj

, (3)

whereyj are expressed in terms ofxi , andyj = 0 for n− r +1 ≤ j ≤ n, andx0 = y0 = 1.
The classesyj can be written inductively as a function ofx1, . . . , xr via

yj = −x1yj−1 − · · · − xj−1y1 − xj for j = 1, . . . , n − r. (4)

In the Landau–Ginzburg formulation, the potential that generates the cohomology ring of
the Grassmannian [9,12,13] is given by

Wn+1(x1, . . . , xr ) =
r∑

i=1

qn+1
i

n + 1
, (5)

wherexi andqi are related by

xi =
∑

1≤l1<l2···<li≤r

ql1ql2 · · · qli . (6)

The cohomology ring of the Grassmannian is then given by

∂Wn+1

∂xi

= (−1)nyn+1−i for 1 ≤ i ≤ r, (7)
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implying that diWn+1 = 0 for i = 1, . . . , r. In terms of thexi ’s [5], the explicit formulas
for theyj ’s and the cohomology potentialW(x1, . . . , xr ) are

yj = (−1)j
[j/2]∑
k1=0

· · ·
[j/r]∑

kr−1=0

(−1)k1+2k2+···+(r−1)kr−1

k1! · · · kr−1!

×
(
j −∑r−1

l=1 lkl

)
!(

j −∑r
l=2lkl−1

)
!
x

j−2k1−···rkr−1
1 x

k1
2 · · · xkr−1

r , (8)

Wn+1(x1, . . . , xr ) =
[n+1/2]∑
k1=0

· · ·
[n+1/r]∑
kr−1=0

(−1)k1+2k2+···+(r−1)kr−1

k1! · · · kr−1!

×
(
n −∑r−1

j=1jkj

)
!(

n + 1 −∑r
j=2jkj−1

)
!
x

n+1−2k1−···rkr−1
1 x

k1
2 · · · xkr−1

r . (9)

The self-intersection numbers〈xr(n−r)
1 〉, and other correlation functions on the Grassman-

nian Gr(C
n) of products of monomials in the cohomology classesxi(1 ≤ i ≤ r) such

that the total power of this product is the dimension ofGr(C), i.e.,r(n − r), may be com-
puted using the residue pairing formula [4]. This formula computes the correlators in the
topological Landau–Ginzburg theories, which for genus zero, reads〈

N∏
i=1

Fi(xj )

〉
= (−1)N(N−1)/2

∑
dW=0

∏N
i=1Fi(xj )

H

= (−1)N(N−1)/2 1

(2πi)N

∮
· · ·
∮

dx1 · · · dxN

∏N
i=1Fi(xj )

∂1W · · · ∂NW
, (10)

whereFi(xj ) are polynomials in the superfieldsxi , H = det(∂i∂jW) is the Hessian and
the summation on the right-hand side in the first expansion is over the critical points ofW .
In this section, the maps from sphere intoGr(C

n) are considered constant, i.e., the moduli
space of instantons is nothing but the GrassmannianGr(C

n) itself, and the correlators
are the intersections of the cycles overGr(C

n). Therefore, the residue pairing formula
reads1

〈xn+1−2k1−···rkr−1
1 x

k1
2 · · · xkr−1

r 〉

= (−1)r(r−1)/2

(2πi)r

∮
· · ·
∮

x
n+1−2k1−···rkr−1
1 x

k1
2 · · · xkr−1

r

∂1W · · · ∂rW
. (11)

The closed form for these correlators is, in general, not known, except for the self-intersection
〈xr(n−r)

1 〉, which was given by the Schubert calculus [1–3] (also called the degree of the

1 This is a natural parameterization for the powers ofxi ’s since the total power sums up tor(n − r), otherwise
the correlators vanish.
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Table 1
Intersection numbersIn

k onG2(C
n) for n = 4, 5, 6, 7

n k

0 1 2 3 4 5

4 2 1 1
5 5 2 1 1
6 14 5 2 1 1
7 42 14 5 2 1 1

Grassmannian) and has the following expression:

〈xr(n−r)
1 〉 = (r(n − r))!

r−1∏
`=0

`!

(n − r + `)!
. (12)

In particular forG2(C
4), the self-intersection〈x4

1〉, is 2 which is the number of lines meeting
4 given lines inCP1, and in general the right-hand side of the above equation gives the
number of(r − 1)-planes meetingN = r(n − r) given (n − (r + 1))-planes in general
position inCPn−1. The simplest non-trivial Grassmannian for which the residue pairing
formula can be used isG2(C

4). Here the potential that generates the cohomology ring
(intersection ring)H ∗(G2(C

4)) is W(x1, x2) = 1
5x5

1 − x3
1x2 + x1x

2
2 and the possible

correlators are〈x4−2k
1 xk

2〉, where 0≤ k ≤ 2. Applying the residue pairing formula, we have

〈x4−2k
1 xk

2〉 = − 1

(2πi)2

∮ ∮
x4−2k

1 xk
2 dx1 dx2

(x4
1 − 3x2

1x2 + x2
2)(−x3

1 + 2x1x2)
. (13)

Explicit computation fork = 0, 1, 2 gives (∂2w = 0 for x2 = 1
2x2

1)〈x4
1〉 = 2, 〈x2

1x2〉 = 1
and 〈x2

2〉 = 1, which agree with the Schubert calculus [3]. In the same way, we have

computed the correlatorsIn
k := 〈x2(n−2)−2k

1 xk
2〉 for n = 5, 6, 7, onG2(C

n) andIn
k1,k2

:=
〈x3(n−3)−2k1−3k2

1 x
k1
2 x

k2
3 〉 on G3(C

n) for n = 5, 6, 7 and the results obtained are indicated
in Tables 1 and 2.

We have checked our computations using the property,ResW(H) = µ, whereµ is the
criticality index of W [4], i.e., the dimension of chiral ringR = C[xi ]/dWi . The above
computations onG2(C

n) andG3(C
n) indicate that we should have〈xα1

1 x
α2
2 〉G2(C

n+1) =
〈xα1

1 x
α2−1
2 〉G2(C

n), 〈xα1
1 x

α2
2 x

α3
3 〉G3(C

n+1) = 〈xα1
1 x

α2
2 x

α3−1
3 〉G3(C

n) and, in general,

〈xα1
1 x

α2
2 · · · xαr

r 〉Gr(Cn+1) = 〈xα1
1 x

α2
2 · · · xαr−1

r 〉Gr(Cn)

with
∑r-1

i=1αi = r(n− r). This is indeed the case as we shall show in the proposition below;
but first we need the following lemma.

Lemma 1. Given an inclusioni : Z ↪→ X (non-singular subvariety) with dimC X −
dimC Z = r = n − m and suppose there exists a complex vector bundle E on X such
that E|Z = NZ,X (normal bundle of Z in X) and α ∈ H 2m(X) = H 2n−2r (X), then
i∗(α) = αXr(E).
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Table 2
Intersection numbersIn

k1,k2
onG3(C

n) for n = 5, 6, 7

(k1, k2) I5
k1,k2

(k1, k2) I6
k1,k2

(k1, k2) I7
k1,k2

(0, 0) 5 (0, 0) 42 (0, 0) 462
(1, 0) 3 (1, 0) 21 (1, 0) 210
(2, 0) 2 (2, 0) 11 (2, 0) 98
(3, 0) 1 (3, 0) 6 (3, 0) 47
(1, 1) 1 (0, 1) 5 (0, 1) 42
(0, 1) 1 (4, 0) 3 (4, 0) 23
(0, 2) 1 (1, 1) 3 (1, 1) 21

(2, 1) 2 (5, 0) 11
(0, 2) 1 (2, 1) 11
(1, 2) 1 (3, 1) 6
(0, 3) 1 (6, 0) 5

(0, 2) 5
(4, 1) 3
(1, 2) 3
(2, 2) 2
(0, 3) 1
(0, 4) 1
(1, 3) 1
(3, 2) 1

For simplicity, consider the caseG2(C
n) ↪→ G2(C

n+1), and letn+1Q andnQ denote
the quotient subbundles onG2(C

n+1) andG2(C
n), respectively, both of rank 2. Then, the

induced pullback givesi∗(n+1Q) = nQ, furthermoren+1Q|G2(C
n) = NG2(C

n),G2(C
n+1).

The above remarks on the intersection numbers onG2(C
n), G2(C

n+1) computed by the
residue pairing formula are equivalent to the following proposition.

Proposition 1. The correlators onG2(C
n+1) andG2(C

n) are identical in the following
sense:

〈x1(
n+1Q)2n−4−2kx2(

n+1Q)k+1〉 = 〈x1(
nQ)2n−4−2kx2(

nQ)k〉. (14)

Proof. Setting x1(
nQ)2n−4−2k = U , x1(

n+1Q)2n−4−2k = U ′, x2(
nQ)k = V k and

x2(
n+1Q)k = V ′k, applying the above lemma;i∗(α) = αxr(

n+1Q) with r = 2 then
i∗(U ′V ′k) = (U ′V ′k)V ′ = U ′V ′k+1 and by using the homomorphism of the pullback, the
left-hand side isUV, hence the proof of the proposition. �

The above proposition can be generalized to correlators onGr(C
n), namely, we will have

the following:

〈x1(
n+1Q)r(n−r)−2k1−3k2−···−rkr−1x2(

n+1Q)k1 · · · xr(
n+1Q)kr−1〉

= 〈x1(
nQ)r(n−r)−2k1−3k2−···−rkr−1x2(

nQ)k1 · · · xr(
nQ)kr−1−1〉. (15)

As a consequence of the proposition, we have a closed formula for the two-point functions
onGr(C

n), containingx1 andxr given by
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〈xr(n−r)−rkr−1
1 x

kr−1
r 〉 = (r(n − kr−1 − r))!

r−1∏
`=0

`!

(n − kr−1 − 1 + `)!
, (16)

which is obtained from the self-intersection formula equation (12) simply by the shift
n → n − kr−1. In particular, onG2(C

n), we have the following closed formula:

〈x2n−4−2k
1 xk

2〉 = (2(n − 2 − k))!

(n − k − 2)!(n − k − 1)!
. (17)

This particular case, that we denote byIn
k , was also obtained using topological Kazama–

Suzuki models based on complex Grassmannian [15]. If we setkr−1 = n − r in Eq. (16),
one obtains〈xn−r

r 〉 = ∫
Gr(Cn)

xn−1
r = 1 as was shown in [9]. The closed formula given

by Eq. (16) is consistent with the proposition above, since the formula is automatically
invariant under the shiftsn → n + 1 andkr → kr + 1, which in turn gives the two-point
function onGr(C

n+1).

3. Intersection numbers on the space of holomorphic maps to a Grassmannian

Here and in the next section we will give two explicit formulas for the intersection num-
bers on the space of holomorphic maps of degreed fromCP1 intoGr(C

n) for r = 2, 3. This
space of maps is denoted byHold(CP1 → Gr(C

n)), the space of instantons of degreed.
The intersection numbers onHold(CP1 → Gr(C

n)) will be computed using the deformed
potentialW̃n+1(x1, . . . , xr ) = Wn+1(x1, . . . , xr ) + (−1)rqx1 that reproduces the quan-
tum cohomologyH ∗

q (Gr(C
n), C) = C[x1, . . . , xr , q]/(∂W̃n+1/∂x1, . . . , ∂W̃n+1/∂xr) [9].

This means that we will use formally the same formula for the intersections on the Grass-
mannian carried out in Section 5, however, the objects inserted in the correlators are the
pullbacks of the cohomology classes (Chern classes) to the parameterizing space of holo-
morphic maps of degreed. These will be denoted again byxi(1 ≤ i ≤ r) such that the
total power of the product of these classes is the dimension ofHold(CP1 → Gr(C

n)),
which is,r(n − r) + nd [16]. We will see that the intersection numbers onHold(CP1 →
G2(C

n)) generate alternating Fibonacci numbers forn = 5, the Pell numbers forn = 6,
and forn ≥ 7 the intersection numbers generate a random walk of a particle on a line
with absorbing barriers [10,11]. The self-intersection formula for〈x2(n−2)+nd

1 〉, which is
a special case of our two-point function given below onHold(CP1 → G2(C

n)) agrees
with that computed in [6] forn = 5. We have also checked the geometrical meaning
of the quantum correction [17] associated with the topologicalσ -model onCP1 with
values in the GrassmannianGr(C

n), in which computing correlators onHold(CP1 →
Gr(C

n)) is equivalent to doing computations onHold−1(CP1 → Gr(C
n)) provided we set

xryn−r = 1.
In the following, we first write the correlators onHold(CP1 → Gr(C

n)) in terms of the
Chern rootsqi [9,18,19], then we will compute explicitly the formula for the intersection
numbers forr = 2, 3. The computations onHold (CP1 → G3 (Cn)) are lengthy we will
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only give the final formula. The correlators onHold(CP1 → Gr (Cn)) are given by

〈xr(n−r)+nd−2k1−···rkr−1
1 x

k1
2 · · · xkr−1

r 〉

= (−1)r(r−1)/2
∑

dW̃n+1=0

x
r(k−r)+nd−2k1−···−rkr−1
1 x

k1
2 · · · xkr−1

r

h
, (18)

where the summation is over a finite number of critical points ofW̃n+1(x1, . . . , xr ) and
h = det(∂i∂j W̃ ). In terms of the Chern rootsqi , the potential is given by

W̃n+1(qi) =
r∑

i=1

qn+1
i

n + 1
+ (−1)rqi . (19)

The Hessian in terms of theqi ’s on the critical points [9] is

det

[
∂W̃n+1

∂qi∂qj

]
dW̃n+1=0

= det

[
∂2W̃

∂xi∂xj

]
∆2, (20)

where∆ = ∏
j<k(qj − qk) is the Vandermond determinant which is the Jacobian for the

change of variables fromqi to xj . Therefore, the Hessian in terms of the Chern roots is
given by

h(q1, . . . , qr ) = det

[
∂2W̃

∂xi∂xj

]
= nr(q1, . . . , qr )

n−1

∆2
. (21)

Since the Vandermond determinant vanishes forqi = qj , the summation over the critical
points given by Eq. (18) involves only distinct rootsqi(1 ≤ i ≤ r) of the polynomial of
degreen, of the form dW̃n+1 = xn+(−1)r and hence the product of the roots satisfy the iden-
tity (q1 · · · qr)

n = 1. By using the factsqn
i = −1, i = 1, 2,x1 = q1+q2, x2 = q1q2 for r =

2 and making the change of variablesqi = ωξi with ωn = −1, ξn
i = 1, the two-point func-

tions onHold(CP1 → G2(C
n)), that we denote byIn,d

k , in terms of the new variablesξi are

〈x2(n−2)+nd−2k
1 xk

2〉 = −
∑

dW̃=0

x
2(n−2)+nd−2k
1 xk

2

h

= (−1)d+1

2n2

∑
ξn
i =1,ξ1 6=ξ2

[(ξ1 + ξ2)
2

−4ξ1ξ2](ξ1 + ξ2)
2(n−2)+nd−2k(ξ1ξ2)

k+1, (22)

where a factor12 was inserted in order to avoid overcounting, since thexi ’s are symmetric
in theqi ’s. The restrictionξ1 6= ξ2 can be lifted provided we subtract from the sum terms
with ξ1 = ξ2. In our case these terms do not contribute, therefore, we obtain

〈x2(n−2)+nd−2k
1 xk

2〉

= (−1)d+1

2

1

n2

∑
ξn
i =1

[(ξ1 + ξ2)
2 − 4ξ1ξ2](ξ1 + ξ2)

2(n−2)+nd−2k(ξ1ξ2)
k+1. (23)
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If we setz = ξ1ξ
−1
2 in Eq. (23), then the above summation will be over a singlenth root of

unity z, i.e.,

〈x2(n−2)+nd−2k
1 xk

2〉 = (−1)d+1

2

1

n2

∑
zn=1

[(1 + z)2 − 4z](1 + z)2(n−2)+nd−2k(z)k+1

= (−1)d+1

2

1

n

∑
zn=1


∑

`≥0

(
2n − 2 + nd− 2k

`

)
z`+k+1

−4
∑
`′≥0

(
2n − 4 + nd− 2k

`′

)
z`′+k+2


 . (24)

The summations ofz`+k+1, z`′+k+2 over thenth roots of unity are non-vanishing only if2

` + k + 1 = nq, `′ + k + 2 = nq′. Finally, explicit computation yields

〈x2(n−2)+nd−2k
1 xk

2〉

= (−1)d+1

2

∑
q∈{1,2,...}

[(
2n − 2 + nd− 2k

qn− (k + 1)

)
− 4

(
2n − 4 + nd− 2k

qn− (k + 2)

)]
. (25)

If we setk = 0 in the above formula, then we obtain the explicit formula for the self-
intersection onHold(CP1 → G2(C

n)), on the other hand, settingd = 0 gives the two-point
functions onG2(C

n) obtained in the previous section (Eq. (17)). Using conformal field the-
ory, an expression for the self-intersection onHold(Σg → G2(C

5)) was obtained [6],
whereΣg is a Riemann surface of genusg. When the genusg = 0, this formula can be
written as follows:

F(0, d) = 1√
5


(√

5 + 1

2

)5(d+1)

+ (−1)d

(√
5 − 1

2

)5(d+1)



= 1√
5


(√

5 + 1

2

)5(d+1)

−
(

1 − √
5

2

)5(d+1)

 , (26)

which is the well-known Binet’s formula for the Fibonacci numbersF5(d+1) [20]. We have
checked for many values ofd that this formula agrees with ours, and therefore we should
have the following mathematical identity onHold(CP′ → G2(C

5)):

〈x6+5d
1 〉 = (−1)d+1

2

∑
q∈{1,2,...}

[(
8 + 5d

5q − 1

)
− 4

(
6 + 5d

5q − 2

)]
= F5(d+1). (27)

By an explicit computation for the two-point functions onHold(CP1 → G2(C
5)), see

2 We have used the identity,
∑

zn=1z
r = n, if r ≡ 0 mod(n), and vanishing otherwise.
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Table 3
Intersection numbersIn,d

k for n = 4, d = 3, 4; n = 5, d = 2, 3 andn = 6, d = 2, 3

k I
4,3
k I

4,4
k I

5,2
k I

5,3
k I

6,2
k I

6,3
k

0 128 512 610 6765 9842 265720
1 64 256 233 2584 3281 88573
2 32 128 89 987 1094 29524
3 16 64 34 377 365 9841
4 8 32 13 144 122 3280
5 4 16 5 55 41 1093
6 2 8 2 21 14 364
7 1 4 1 8 5 121
8 0 2 1 3 2 40
9 1 1 1 13

10 1 0 1 4
11 1
12 0

Table 4
Intersection numbersIn,d

k for n = 7, d = 1, 2 andn = 8, 9, 10,d = 1

k I
7,1
k I

7,2
k I

8,1
k I

9,1
k I

10,1
k

0 2380 147798 15504 100947 657800
1 728 45542 4488 28101 177859
2 221 14041 1288 7752 47562
3 66 4334 364 2108 12597
4 19 1341 100 560 3264
5 5 413 26 143 820
6 1 131 6 34 196
7 0 42 1 7 43
8 14 0 1 8
9 5 0 1

10 2 0
11 1
12 0

Table 3 for variousk and for fixedd, one can see that we should have the identity

〈x6+5d−2k
1 xk

2〉 = F5(d+1)−2k. (28)

The intersection numbers given byF5(d+1)−2k correspond to the alternate Fibonacci num-
bers for 0≤ k ≤ [ 5

2(d+1)] with d fixed, and fork = [ 5
2(d+1)] the intersection numbers are

equal to 1 or 0 depending on whether the degree of the holomorphic mapsd is even or odd.
This seems to hold for everyn. Forn = 4, the intersection numbersHold(CP1 → G2(C

4))

are powers of 2, as one can see from Table 3. Forn = 6, we obtain two possible sequences
of Pell numbers [10], whend is odd the general term is12(3m − 1), and the other sequence
given by1

2(3m+1) for even degree. In general, forn ≥ 7, the intersection numbers generate
a random walk with absorbing barriers [5,10]. This is a one-dimensional random walk, in
which the particle starts at point 1 and arrives eventually at the pointn, the particle may
never visit 0, i.e., the points 0 andn are absorbing barriers this happens when the degree is
odd. When the degreed is even, the intersection numbers generate a random walk on a line
for a particle that starts at pointn − 1 (see Table 4).
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4. The correlators onHold(CP1 → G3(C
n))Hold(CP1 → G3(C
n))Hold(CP1 → G3(C
n))

In computing all the correlators onHold(CP1 → G3(C
n)) that we denote byIn,d

k1,k2
we

follow the same technique as for the two-point functions computed in Section 3. Using
Eqs. (18) and (21) and after some algebra, the correlators can be written as

〈x3(n−3)+nd−2k1−3k2
1 x

k1
2 x

k2
3 〉

= − 1

n3

∑
qn
i =1, i=1,2,3

(q1−q2)
2(q2 − q3)

2(q1−q3)
2(q1 + q2 + q3)

3(n−3)+nd−2k1−3k2

×(q1q2 + q1q3 + q2q3)
k1(q1q2q3)

k2+1

= −1

6

∑
p,q∈{1,2,...}

2∑
s,t=0

(−1)s+t

(
2
s

)(
2
t

) k1∑
`′=0

`′∑
`′′=0

(
k1

`′

)(
`′

`′′

)
x!

(x − y)!

×
[

1

(z)!(w)!
+ 1

(z + 2)!
− 2

(z + 1)(w − 1)!

]
, (29)

where

w = qn− (`′ + k2 + t + 1),

x = 3(n − 3) + nd− 2k1 − 3k2,

y = (p + q)n − (`′ + `′′ + k1 + 2k2 + 4 + s + t),

z = pn− (k1 + k2 + s + 3 − `′′). (30)

If we setd = 0, k1 = k2 = 0 in the above formula, then we obtain the number

I
n,0
0,0 = 2(3(n − 3))!

(n − 3)!(n − 2)(n − 1)!
,

which is the self-intersection formula for〈x3(n−3)
1 〉 onG3(C

n) given by Eq. (12). We also
have checked that the above formula ford = 0 gives the intersection numbers onG3(C

5)and

Table 5
Intersection numbersI6,1

k1,k2

k1 k2

0 1 2 3 4

0 2730 341 43 6 1
1 1365 171 22 3 0
2 683 86 11 1 0
3 342 43 5 0
4 171 21 2
5 85 10
6 42 5
7 21
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Table 6
Intersection numbersI6,2

k1,k2

k1 k2

0 1 2 3 4 5

0 17476 21845 2731 342 43 5
1 87381 10923 1366 171 21 2
2 43691 5462 683 85 10 1
3 21846 2731 341 42 5 1
4 10923 1365 170 21 3
5 5461 682 85 11
6 2730 341 43 6
7 1365 171 22
8 683 86
9 342 43

10 171

G3(C
6) and therefore settingd = 0 in Eq. (29), we obtain the formula for the intersection

numbersIn
k1,k2

onG3(C
n).

Let us check the implication of the geometrical meaning of the quantum correction
[17] using our formula (Eq. (29)). As was mentioned in the beginning of this section, the
quantum correction implies that correlators onHold(CP1 → G3(C

n)) are identical to those
onHold−1(CP1 → G3(C

n)) provided we setx3yn−3 = 1. This can be seen by considering
the following simple example: suppose we want to evaluate the correlator〈x7

1x2x3y3〉d=1,

wherey3 = x3
1 −2x1x2+x3. Then using the results indicated in Table 5, whereI

6,1
1,1 = 171,

I
6,1
2,1 = 86 andI

6,1
1,2 = 22 we have〈x7

1x2x3y3〉d=1 = 21 which is 〈x7
1x2〉d=0 = I6

1,0
(see Table 2).

5. Conclusion

In Section 2, we obtained a closed formula for the two-point functions〈xr(n−r)−rkr−1
1 x

kr−1
r 〉

on Gr(C
n) given by Eq. (16). When we setr = 2, two-point functions onG2(C

n) are
obtained. Also, all the correlators〈x3(n−r)−2k1−3k2

1 x
k1
2 x

k2
3 〉 on G3(C

n) are obtained by re-
stricting our formula on the space of holomorphic maps of degreed to constant maps, i.e.,
d = 0. The closed formulas, obtained here are extensions of the Schubert formula equation
(12) that computes the self-intersection〈xr(n−r)

1 〉.
In Section 3, we obtained an explicit formula for the two-point functions on the space of

holomorphic maps of degreed from CP1 into G2(C
n). This formula generates well-known

numbers like the Fibonacci numbers forn = 5 and the Pell numbers forn = 6 [10].
However, whenn ≥ 7 the formula generates a random walk of a particle on line with
absorbing barriers [5,10] that starts at the point 1 and eventually reaches the pointn, if d

is odd. Whend is even the particle starts at the pointn − 1 (see Table 4 and [11]). At the
moment, we do not understand this connection. It would be nice if this can be understood
from both mathematics and physics.
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Also on the moduli space of holomorphic maps intoGr(C
n), we have computed inter-

section numbers using Eq. (29), these numbers follow well-organized patterns for givenn.
For n = 5, the intersection numbers are given by the Fibonacci numbers, this is expected
sinceG3(C

5) andG2(C
5) are dual to each other. Settingn = 6, one obtains a pattern like

that in Tables 5 and 6 for any degreed. Forn = 7, we have found sequences of numbers
such that the ratio of any consecutive numbers behave like that ofLn/Fn, thenth Lucas
number by thenth Fibonacci number, which is known to be

√
5.
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